Origin of petroleum in the Neoproterozoic–Cambrian South Oman Salt Basin

نویسندگان

  • E. Grosjean
  • D. A. Fike
چکیده

The South Oman Salt Basin (SOSB) is host to the world’s oldest known commercial deposits. Most of the South Oman oils have been proven to be associated with the source rocks of the Neoproterozoic to Cambrian Huqf Supergroup, but the assignment of oils to specific Huqf intervals or facies has been hampered by the geochemical similarity of the organic matter across the entire Huqf sequence, possibly as a consequence of limited change in the local palaeoenvironment and biota over the time of its deposition. This study was conducted to establish improved correlations between organic-rich rock units and reservoir fluids in the SOSB through detailed molecular and isotopic analysis of the Huqf Supergroup, with special emphasis directed towards understanding the Ara carbonate stringer play. Unusual biomarkers, tentatively identified as A-norsteranes, show distinctive patterns among carbonate stringer oils and rocks different from those observed in Nafun sediments and Ara rocks from the Athel basin. These putative A-norsteranes form the basis for new oil-source correlations in the SOSB and provide for the first time geochemical evidence of a self-charging mechanism for the carbonate stringer play. The paucity of markers specific to the Nafun Group (Shuram, Buah and Masirah Bay formations) confounds attempts to quantify their respective contributions to Huqf oil accumulations. Nafun inputs can only be determined on the basis of subtle differences between Nafun and Ara biomarker ratios. The most useful geochemical characteristics delineating Nafun Group organic matter from Ara Group intra-salt source rocks included: low relative abundance of mid-chain monomethyl alkanes (X-compounds); low relative abundance of gammacerane, 28,30-dinorhopane, 25,28,30-trinorhopane and 2-methylhopanes; low C22T/C21T and high C23T/C24T cheilanthanes ratio values. Based on these parameters, molecular evidence for major contributions of liquid hydrocarbons from Nafun Group sediments (Shuram, Buah and Masirah Bay formations) is lacking. Our results suggest that the majority of SOSB hydrocarbon accumulations originate from within the Ara group, either from the carbonate stringers or from the package of sediments that comprises the Thuleilat, Athel Silicilyte and U shale formations. Subtle aspects of the composition of some carbonate stringer and post-salt Huqf oils could suggest some degree of sourcing from the Nafun rocks but stronger evidence is needed to confirm this. Crown copyright 2008 Published by Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrocarbon biomarkers of Neoproterozoic to Lower Cambrian oils from eastern Siberia

The Neoproterozoic Era is of widespread geobiological interest because it marks the critical transition from a world of microbes to one where animals become an established feature of the landscape. Much research into this time period has focused on the ventilation of the oceans, as this is widely considered a primary factor driving the diversification of complex, multicellular life. In this stu...

متن کامل

Geochronologic Constraints on the Chronostratigraphic Framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman

The Huqf Supergroup, Sultanate of Oman, contains an important record of Neoproterozoic history, including evidence for two glaciations, a massive reorganization of the global carbon cycle, and the Ediacaran-Cambrian transition. New U-Pb geochronologic data provide precise constraints on the age of several key stratigraphic levels in the Neoproterozoic Huqf Supergroup and its subjacent crystalli...

متن کامل

زمین‌شیمی و سنگ‌زایی سنگ‌های دیابازی سازند هرمز، واقع در استان هرمزگان (جنوب ایران)

The Hormuz Formation is a sequence of lithologically various evaporitic–volcanic rocks in salt domes where the volcanic rocks are dominantly acidic, generally with less than one third basic volcanics. It was formed in the Late Proterozoic (640–620 Ma)/Neoproterozoic–Early Cambrian, as a result of sub-basin rifting in the northern part of the Arabian plate, throughout most of the Persian Gulf Ba...

متن کامل

Paleoecology and paleoceanography of the Athel silicilyte, Ediacaran-Cambrian boundary, Sultanate of Oman.

The Athel silicilyte is an enigmatic, hundreds of meters thick, finely laminated quartz deposit, in which silica precipitated in deep water (>~100-200 m) at the Ediacaran-Cambrian boundary in the South Oman Salt Basin. In contrast, Meso-Neoproterozoic sinks for marine silica were dominantly restricted to peritidal settings. The silicilyte is known to contain sterane biomarkers for demosponges, ...

متن کامل

Metamorphism of Late Neoproterozoic-Early Cambrian Schists in Southwest of Zanjan from the Soltanieh Belt in Northwest of Iran

Late Neoproterozoic-Early Cambrian schists have been occurred in southwest of Zanjan city from the Soltanieh belt. The Soltanieh belt in northwest of Iran is uplifted basement of Precambrian-Paleozoic in main central Iran zone and includes outcrops of Precambrian, Paleozoic and Mesozoic Formations. Late Neoproterozoic-Early Cambrian schists, the oldest stratigraphy unit in the region, consist o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008